Acta Cryst. (1996). C52, 361-363

Chloro(5,10,15,20-tetraphenylporphyrinato)manganese(III) with $\mathbf{4 / m}$ Symmetry

Beisong Cheng and W. Robert Schedt
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA

(Received 7 March 1995; accepted 10 July 1995)

Abstract

The crystal structure of $[\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$ in space group I4/m (where TPP is $\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{4}$) has been determined. The unit cell contains two full molecules, with one eighth of a molecule unique. An out-of-plane model for the Mn atom was applied and all non- H atoms were refined anisotropically. The $\mathrm{Mn}-\mathrm{N}$ distance is 2.002 (3) \AA, the axial $\mathrm{Mn}-\mathrm{Cl}$ distance is 2.297 (15) \AA and the out-of-plane displacement of the Mn atom is $0.16 \AA$. The possibility of a reverse-doming porphyrin core conformation is mentioned briefly.

Comment

For tetragonal [Mn (TPP)Cl] with required $4 / m$ symmetry and a five-coordinate manganese(III) ion, the Mn and Cl atoms are required to be disordered along the axis at $0,0, \pm z$. The coordination group distances that result are $\mathrm{Mn}-\mathrm{N}=2.002(3), \mathrm{Ct} \cdots \mathrm{Cl}=2.452(3), \mathrm{Mn}-\mathrm{Cl}=$ 2.297 (15) \AA, and a Mn -atom displacement of $\pm 0.16 \AA$.

[$\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$
These values are smaller than expected for a fivecoordinate $\mathrm{Mn}^{\text {III }}$ porphyrinate. Indeed, in the crystal structure of $[\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$ as the acetone solvate with no required symmetry for the molecule (Tulinsky \& Chen, 1977), an axial $\mathrm{Mn}-\mathrm{Cl}$ bond distance of 2.363 (3) \AA, an average $\mathrm{Mn}-\mathrm{N}$ bond length of 2.008 (15) \AA and a $\mathrm{Ct} \cdots \mathrm{Cl}$ distance of $2.633 \AA$ were observed; the Mn atom displacement from the mean plane of the four N atoms was $0.27 \AA$. Essentially identical values were obtained for the chloroform solvate of $[\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$ (Hoard, 1975). We believe that the coordination group parameters for the tetragonal form of [$\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$ are underestimated and that this underestimation results
from a reverse doming of the porphyrinato core that is caused by crystal packing and obscured by the crystallographically required $4 / m$ symmetry. We note that a similar phenomenon is also observed in the structures of two crystal forms of $[\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}]$ and $\left[\mathrm{Zn}(\mathrm{TPP})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$. In the monoclinic form of $[\mathrm{Fe}(\mathrm{TPP}) \mathrm{Cl}]$ with no required symmetry, the axial $\mathrm{Fe}-\mathrm{Cl}$ bond length is 2.211 (1) \AA, the average $\mathrm{Fe}-\mathrm{N}$ distance is 2.070 (9) \AA and the Fe -atom displacement is $0.49 \AA$ from the plane of the four N atoms (Scheidt \& Finnegan, 1989). However, a set of significantly smaller values [2.192 (12), 2.049 (9) and $0.38 \AA$, respectively] were reported for the tetragonal structure with required $4 / m$ symmetry (Hoard, Cohen \& Glick, 1967). In addition, in the two Zn complexes, the tetragonal form (Glick, Cohen \& Hoard, 1967; Golder, Povey, Silver \& Jassim, 1990) has smaller coordination group parameters than the triclinic form (Cheng \& Scheidt, 1995), although the comparison is made more difficult by the fact that the $\mathrm{Zn}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ bond is affected by strong hydrogen bonding to the aqua ligand in the triclinic form.

We note that there are many example of fivecoordinate $\operatorname{MTPP}(X)$ complexes which crystallize in the space group $I 4 / m$; see Table XXVI of Scheidt \& Lee (1987) for a number of examples.

Fig. 1. ORTEP diagram of $[\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$ showing the labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Porphyrin H atoms are omitted for clarity.

Fig. 2. Stereoscopic packing diagram of $[\mathrm{Mn}(\mathrm{TPP}) \mathrm{Cl}]$.

Experimental

This new crystal form with required $4 / m$ symmetry for the title compound was obtained in the course of our synthetic work on μ-oxo- and μ-hydroxomanganese(III) tetraphenylporphyrinate complexes, and recrystallized from toluene and hexanes.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{~N}_{4}\right) \mathrm{Cl}\right]$
$M_{r}=703.09$
Tetragonal
14/m
$a=13.463$ (3) \AA
$c=9.864(4) \AA$
$V=1787.9(9) \AA^{3}$
$Z=2$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius FAST areadetector diffractometer
Ellipsoid-mask fitting
Absorption correction: none
4391 measured reflections
946 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 246 reflections
$\theta=5.1-20.8^{\circ}$
$\mu=0.481 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular prism
$0.35 \times 0.25 \times 0.10 \mathrm{~mm}$ Black

771 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.0603$
$\theta_{\text {max }}=26.62^{\circ}$
$h=-15 \rightarrow 15$
$k=-16 \rightarrow 16$
$l=-12 \rightarrow 7$

Refinement

Refinement on F^{2}
$R(F)=0.0546$
$w R\left(F^{2}\right)=0.1293$
$S=1.084$
946 reflections
73 parameters
H atoms idealized, riding

$$
\begin{aligned}
& (\mathrm{C}-\mathrm{H} 0.93 \AA) \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0641 P)^{2}\right. \\
& \quad+2.7218 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.306 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.348 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Mn	0	0	0.0158 (15)	0.034 (2)
Cl	0	0	0.2486 (3)	0.0551 (8)
N	-0.0379 (2)	0.1433 (2)	0	0.0435 (8)
$\mathrm{C}(a 1)$	0.0249 (3)	0.2240 (3)	0	0.0443 (9)
$\mathrm{C}\left(a^{2}\right)$	-0.1329 (3)	0.1822 (3)	0	0.0429 (9)
$\mathrm{C}(\mathrm{bl})$	-0.0316 (3)	0.3134 (3)	0	0.0546 (11)
$\mathrm{C}(\mathrm{b2})$	-0.1273 (3)	0.2882 (3)	0	0.0526 (11)
$\mathrm{C}(\mathrm{ml})$	0.1279 (3)	0.2203 (3)	0	0.0431 (9)
C(11)	0.1841 (3)	0.3155 (3)	0	0.0434 (9)
$\mathrm{C}(12)$	$0.2109(3)$	0.3602 (3)	-0.1190 (4)	0.0673 (10)
C(13)	0.2655 (3)	0.4474 (3)	-0.1179 (5)	0.0786 (12)
C(14)	0.2935 (3)	0.4898 (3)	0	0.0694 (15)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Mn}-\mathrm{Mn}^{\mathrm{i}}$	$0.31(3)$	$\mathrm{C}(a 2)-\mathrm{C}\left(m 1^{\mathrm{ii}}\right)$	$1.385(5)$
$\mathrm{Mn}-\mathrm{N}$	$2.002(3)$	$\mathrm{C}(a 2)-\mathrm{C}(b 2)$	$1.429(5)$
$\mathrm{Mn}-\mathrm{Cl}$	$2.297(15)$	$\mathrm{C}(b 1)-\mathrm{C}(b 2)$	$1.332(6)$
$\mathrm{Mn}-\mathrm{Cl}^{\mathrm{i}}$	$2.609(15)$	$\mathrm{C}(m 1)-\mathrm{C}(11)$	$1.488(5)$

$\mathrm{N}-\mathrm{C}(\mathrm{al})$	1.377 (5)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.368 (4)
$\mathrm{iv}-\mathrm{C}(\mathrm{a} 2)$	1.381 (5)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.384 (5)
$\mathrm{C}(\mathrm{al})-\mathrm{C}(m 1)$	1.387 (5)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.350 (5)
$\mathrm{C}(a)-\mathrm{C}(b 1)$	1.424 (5)		
Mn ${ }^{\mathbf{i}}$-Mn-N	85.5 (4)	$\mathrm{N}-\mathrm{C}(a 2)-\mathrm{C}(b 2)$	109.2 (3)
$\mathrm{N}^{\mathrm{ii}}-\mathrm{Mn}-\mathrm{N}$	89.65 (6)	$\mathrm{C}\left(m 1^{11}\right)-\mathrm{C}(a 2)-\mathrm{C}\left(b_{2}\right)$	124.9 (4)
$\mathrm{N}^{\mathbf{i}}-\mathrm{Mn}-\mathrm{N}$	171.1 (8)	$\mathrm{C}(b 2)-\mathrm{C}(b 1)-\mathrm{C}(a 1)$	107.6 (3)
$\mathrm{N}-\mathrm{Mn}-\mathrm{Cl}$	94.5 (4)	$\mathrm{C}(b 1)-\mathrm{C}(b 2)-\mathrm{C}(a 2)$	107.8 (3)
$\mathrm{C}(a 1)-\mathrm{N}-\mathrm{C}\left(a_{2}\right)$	105.7 (3)	$\mathrm{C}\left(\mathrm{a} 2{ }^{\text {iI }}\right)-\mathrm{C}(\mathrm{ml})-\mathrm{C}(a 1)$	123.9 (3)
$\mathrm{C}(\mathrm{al})-\mathrm{N}-\mathrm{Mn}$	127.1 (2)	$\mathrm{C}(a)-\mathrm{C}(\mathrm{ml})-\mathrm{C}(11)$	118.5 (3)
$\mathrm{C}(\mathrm{a} 2)-\mathrm{N}-\mathrm{Mn}$	126.9 (2)	$\mathrm{C}\left(\mathrm{a} 2{ }^{\text {111 }}\right)-\mathrm{C}(m)-\mathrm{C}(11)$	117.6 (3)
$\mathrm{Mn}-\mathrm{N}-\mathrm{Mn}^{\text {1 }}$	8.9 (8)	$\mathrm{C}\left(12^{\text {iv }}\right)-\mathrm{C}(11)-\mathrm{C}(12)$	118.2 (4)
$\mathrm{N}-\mathrm{C}(a 1)-\mathrm{C}(m 1)$	125.9 (3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(\mathrm{m} 1)$	120.9 (2)
$\mathrm{N}-\mathrm{C}(a)-\mathrm{C}(b 1)$	109.7 (3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.5 (3)
$\mathrm{C}(m \mathrm{l})-\mathrm{C}(a 1)-\mathrm{C}(b 1)$	124.4 (4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.9 (4)
$\mathrm{N}-\mathrm{C}(a 2)-\mathrm{C}\left(m 1^{\text {in }}\right)$	125.9 (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}\left(13^{14}\right)$	119.0 (4)
Symmetry codes: (i) $-x,-y,-z$; (ii) $-y, x, z$; (iii) $y,-x,-z$; (iv) $x, y,-z$.			

Cell determination and intensity data collection were performed on an Enraf-Nonius FAST area-detector diffractometer with an Mo rotating-anode source. Our detailed methods and procedures for small-molecule X-ray data collection with the FAST system have been described previously (Scheidt \& Turowska-Tyrk, 1994). The centrosymmetric space group $14 / m$ was chosen based on the E statistics and consequently proved by the successful refinement.

Data collection: MADNES (Messerschmitt \& Pflugrath, 1987). Cell refinement: MADNES. Data reduction: MADNES. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

We thank the National Institutes of Health for support of this research under grant GM-38401. Funds for the purchase of the FAST area-detector diffractometer were provided through NIH grant RR-06709. BC acknowledges the J. Peter Grace Prize Fellowship through the University of Notre Dame.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1136). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cheng, B. C. \& Scheidt, W. R. (1995). Inorg. Chim. Acta. In the press.
Glick, M. D., Cohen, G. H. \& Hoard, J. L. (1967). J. Am. Chem. Soc. 89, 1996-1998.
Golder, A. J., Povey, D. C., Silver. J. \& Jassim, Q. A. A. (1990). Acta Cryst. C46, 1210-1212.
Hoard, J. L. (1975). Porphyrins and Metalloporphyrins, edited by K. M. Smith, pp. 353-353. New York: Elsevier.

Hoard, J. L., Cohen, G. H. \& Glick, M. D. (1967). J. Am. Chem. Soc. 89, 1992-1996.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Messerschmitt, A. \& Pflugrath, J. W. (1987). J. Appl. Cryst. 20, 306315.

Scheidt, W. R. \& Finnegan, M. G. (1989). Acta Cryst. C45, 1214 1216.

Scheidt, W. R. \& Lee, Y. J. (1987). Struct. Bonding, 64, 1-70. Scheidt, W. R. \& Turowska-Tyrk, I. (1994). Inorg. Chem. 33, 1314 1318.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tulinsky, A. \& Chen, B. M. L. (1977). J. Am. Chem. Soc. 99, 36473651.

